If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x+2.1x^2=1000
We move all terms to the left:
56x+2.1x^2-(1000)=0
a = 2.1; b = 56; c = -1000;
Δ = b2-4ac
Δ = 562-4·2.1·(-1000)
Δ = 11536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11536}=\sqrt{16*721}=\sqrt{16}*\sqrt{721}=4\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{721}}{2*2.1}=\frac{-56-4\sqrt{721}}{4.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{721}}{2*2.1}=\frac{-56+4\sqrt{721}}{4.2} $
| 0.009(3-k)+0.07(k-1)=1 | | S+4s-s+2s=18 | | (x-9)^4/3=-18 | | 20q-11q-5q-q-q=18 | | 9r+r-r=18 | | 2v=6/5 | | n+1/4=3n+6/7 | | 2w/3=12+-2w/7 | | 3x2-4x-1=0 | | 20u-18u=20 | | 4x+6=14x-4 | | 7g+3g=20 | | 5x2+7x+1=0 | | 15w-12w=18 | | 12z-5z=7 | | -y+13=-18 | | Y+(5x5)=17 | | 25t^2-30t-15=0 | | 3x-25=2x+30 | | 2.5(x)=2x^2+3x-7 | | F(x)=x2-2x+2 | | 0=-4u^2-6u+4 | | 7x^2-14x+4=0 | | x+(x*0.18)=150 | | -5b-14+(-4)=33+6 | | 4x+17+-5=32 | | 4c+17+-5=31 | | -62c+24=334 | | 24-2y-3y=44 | | 97y+264=-27 | | 0.09x-2.7=15.21 | | -1.02y+148.19=14462 |